Color Object Recognition based on Spatial Relations between Image Layers

نویسندگان

  • Michaël Clément
  • Mickaël Garnier
  • Camille Kurtz
  • Laurent Wendling
چکیده

The recognition of complex objects from color images is a challenging task, which is considered as a keystep in image analysis. Classical methods usually rely on structural or statistical descriptions of the object content, summarizing different image features such as outer contour, inner structure, or texture and color effects. Recently, a descriptor relying on the spatial relations between regions structuring the objects has been proposed for gray-level images. It integrates in a single homogeneous representation both shape information and relative spatial information about image layers. In this paper, we introduce an extension of this descriptor for color images. Our first contribution is to consider a segmentation algorithm coupled to a clustering strategy to extract the potentially disconnected color layers from the images. Our second contribution relies on the proposition of new strategies for the comparison of these descriptors, based on structural layers alignments and shape matching. This extension enables to recognize structured objects extracted from color images. Results obtained on two datasets of color images suggest that our method is efficient to recognize complex objects where the spatial organization is a discriminative feature.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Urban Vegetation Recognition Based on the Decision Level Fusion of Hyperspectral and Lidar Data

Introduction: Information about vegetation cover and their health has always been interesting to ecologists due to its importance in terms of habitat, energy production and other important characteristics of plants on the earth planet. Nowadays, developments in remote sensing technologies caused more remotely sensed data accessible to researchers. The combination of these data improves the obje...

متن کامل

The Combinational Use Of Knowledge-Based Methods and Morphological Image Processing in Color Image Face Detection

The human facial recognition is the base for all facial processing systems. In this work a basicmethod is presented for the reduction of detection time in fixed image with different color levels.The proposed method is the simplest approach in face spatial localization, since it doesn’trequire the dynamics of images and information of the color of skin in image background. Inaddition, to do face...

متن کامل

Robust Object Recognition Using Color Co-occurrence Histogram and Spatial Relations of Image Patches

In this paper, a robust object recognition system is proposed, where patch-based pyramid images and spatial relationships among patches are utilized for our object model. Specially, both color histogram (CH) and color co-occurrence histogram (CCH) are applied to obtain image features for each patch. Locations of candidate regions to be tested are decided by a particle filter in our matching pro...

متن کامل

Object-Oriented Method for Automatic Extraction of Road from High Resolution Satellite Images

As the information carried in a high spatial resolution image is not represented by single pixels but by meaningful image objects, which include the association of multiple pixels and their mutual relations, the object based method has become one of the most commonly used strategies for the processing of high resolution imagery. This processing comprises two fundamental and critical steps towar...

متن کامل

Object Recognition based on Local Steering Kernel and SVM

The proposed method is to recognize objects based on application of Local Steering Kernels (LSK) as Descriptors to the image patches. In order to represent the local properties of the images, patch is to be extracted where the variations occur in an image. To find the interest point, Wavelet based Salient Point detector is used. Local Steering Kernel is then applied to the resultant pixels, in ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2015